<--- Back to Details
First PageDocument Content
Recommender system / Choice / User modeling / Mind / Science / Economics / Consumer theory / Microeconomics / Preference
Date: 2011-01-18 06:56:45
Recommender system
Choice
User modeling
Mind
Science
Economics
Consumer theory
Microeconomics
Preference

Evaluating Preference-based Search Tools: A Tale of Two Approaches

Add to Reading List

Source URL: liawww.epfl.ch

Download Document from Source Website

File Size: 819,71 KB

Share Document on Facebook

Similar Documents

Collective intelligence / Information systems / Information science / Information / E-commerce / Computing / Recommender system / Cold start / Food / Preference elicitation / Nutrition / Personalization

Yum-Me: A Personalized Nutrient-Based Meal Recommender System LONGQI YANG, Cornell Tech, Cornell University CHENG-KANG HSIEH, University of California, Los Angeles HONGJIAN YANG and JOHN P. POLLAK, Cornell Tech, Cornell

DocID: 1xVQo - View Document

Yum-Me: A Personalized Nutrient-Based Meal Recommender System LONGQI YANG, Cornell Tech, Cornell University CHENG-KANG HSIEH, University of California, Los Angeles HONGJIAN YANG and JOHN P. POLLAK, Cornell Tech, Cornell

DocID: 1tE3G - View Document

Privacy Assessment of Data Flow Graphs for an Advanced Recommender System in the Smart Grid Fabian Knirsch1 , Dominik Engel1 , Cristian Neureiter1 , Marc Frincu2 , and Viktor Prasanna2 1

DocID: 1sXaB - View Document

A Novel Recommender System in IoT Remo Manuel Frey1, Runhua Xu1, and Alexander Ilic2 I. ABSTRACT In Internet of Things (IoT), selling smart physical objects together with a compatible mobile app becomes an upcoming

DocID: 1sIQs - View Document

RiVal – A Toolkit to Foster Reproducibility in Recommender System Evaluation Alan Said Alejandro Bellogín

DocID: 1sgiJ - View Document