<--- Back to Details
First PageDocument Content
Approximations of π / William Shanks / Floating point / Sine / Transcendental number / Chudnovsky brothers / Gauss–Legendre algorithm / Inverse trigonometric functions / Number / Mathematics / Pi / Mathematical analysis
Date: 2013-05-28 22:20:20
Approximations of π
William Shanks
Floating point
Sine
Transcendental number
Chudnovsky brothers
Gauss–Legendre algorithm
Inverse trigonometric functions
Number
Mathematics
Pi
Mathematical analysis

Add to Reading List

Source URL: www.carma.newcastle.edu.au

Download Document from Source Website

File Size: 647,47 KB

Share Document on Facebook

Similar Documents

Geometry / Peter Borwein / Approximations of π / Transcendental number / Chudnovsky brothers / Ludolph van Ceulen / Inverse trigonometric functions / David H. Bailey / Area of a disk / Pi / Mathematics / Mathematical analysis

254 NAW 5/1 nr. 3 september 2000 The amazing number π

DocID: xKYA - View Document

Polytechnic Institute of New York University / Education in New York City / Academia / Institute of Mathematics / Pi / Higher education / Chudnovsky brothers / Middle States Association of Colleges and Schools / New York University / Association of Independent Technological Universities

Prof. David V. Chudnovsky Prof. Gregory V. Chudnovsky

DocID: 4iHJ - View Document

Approximations of π / Squaring the circle / Chudnovsky brothers / Turn / Sine / Factorial / Ludolph van Ceulen / Area / Floating point / Pi / Mathematics / Mathematical analysis

SQUARING theCide is no Pieceofn

DocID: 2sE6 - View Document

Approximations of π / William Shanks / Floating point / Sine / Transcendental number / Chudnovsky brothers / Gauss–Legendre algorithm / Inverse trigonometric functions / Number / Mathematics / Pi / Mathematical analysis

PDF Document

DocID: 17QP - View Document