First Page | Document Content | |
---|---|---|
![]() Date: 2008-02-02 00:53:43Mathematics Analytic number theory Group theory Siegel modular form Congruence subgroup Modular group Theta function Orbifold Representation theory Mathematical analysis Modular forms Abstract algebra | Add to Reading List |
![]() | Cycles and Subschemes 14Cxx [1] Timothy G. Abbott, Kiran S. Kedlaya, and David Roe, Bounding Picard numbers of surfaces using p-adic cohomology, Anita Buckley and Bal´azs Szendr¨oi, Orbifold Riemann-Roch forDocID: 1voxn - View Document |
![]() | A panaroma of the fundamental group of the modular orbifold A. Muhammed Uluda˘g∗and Ayberk Zeytin∗∗ Department of Mathematics, Galatasaray University ˙ CDocID: 1tBnz - View Document |
![]() | On Topological Minors in Random Simplicial Complexes∗ Anna Gundert† Uli Wagner‡ arXiv:1404.2106v2 [math.CO] 4 May 2015DocID: 1rnFz - View Document |
![]() | Daniel Huson Bibliography Jan-2015DocID: 1rhZV - View Document |
![]() | 165 Documenta Math. On the Leading Terms of Zeta Isomorphisms and p-Adic L-functions in Non-Commutative Iwasawa TheoryDocID: 1rfLe - View Document |