<--- Back to Details
First PageDocument Content
Separable extension / Separable polynomial / Field extension / Field / Finite field / Integral element / Galois theory / Algebraic number field / Irreducible polynomial / Abstract algebra / Algebra / Field theory
Date: 2014-05-28 20:47:57
Separable extension
Separable polynomial
Field extension
Field
Finite field
Integral element
Galois theory
Algebraic number field
Irreducible polynomial
Abstract algebra
Algebra
Field theory

Algebraic Number Theory[removed]Field extensions (revision of algebraic prerequisites)

Add to Reading List

Source URL: www.plouffe.fr

Download Document from Source Website

File Size: 247,01 KB

Share Document on Facebook

Similar Documents

GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples √ √ Example 1.1. The field extension Q( 2, 3)/Q is Galois of degree 4, so its Galois√group

DocID: 1uWWM - View Document

Galois theory for schemes H. W. Lenstra Mathematisch Instituut Universiteit Leiden Postbus 9512, 2300 RA Leiden The Netherlands

DocID: 1uGuK - View Document

Fields and Galois Theory J.S. Milne Version 4.22 March 30, 2011 A more recent version of these notes is available at www.jmilne.org/math/

DocID: 1tRb0 - View Document

The pro-étale fundamental group Wouter Zomervrucht, December 16, Infinite Galois theory We develop an ‘infinite’ version of Grothendieck’s Galois theory. It was introduced first by Noohi [3] and slightly m

DocID: 1t9l4 - View Document

301 Documenta Math. Additive Structure of Multiplicative Subgroups of Fields and Galois Theory

DocID: 1sAX8 - View Document