First Page | Document Content | |
---|---|---|
Date: 2012-04-18 10:30:29Ordinary differential equations Mathematical optimization Differential equations Differential calculus Equations Partial differential equation Calculus of variations Dynamic programming Euler–Lagrange equation Calculus Mathematical analysis Mathematics | DYNAMIC PROGRAMMING AND MODERN CONTROL THEORY RICHARDAdd to Reading ListSource URL: www.mathunion.orgDownload Document from Source WebsiteFile Size: 1,95 MBShare Document on Facebook |
𝑑 𝜕𝐿 𝜕𝐿 − =0 𝑑𝑡 𝜕𝑞 𝜕𝑞 Euler-Lagrange equationDocID: 1uRZj - View Document | |
The Geometry of the Euler-Lagrange Equation Erik Curiel March 11, 2010 Contents 1 The Intrinsic Geometry of the Tangent BundleDocID: 1kA4y - View Document | |
A Sharp Existence Theorem for Vortices in the Theory of Branes1 Xiaosen Han2 arXiv:1110.1423v2 [math-ph] 18 JunInstitute of Contemporary MathematicsDocID: 1gwxM - View Document | |
Table of Contents Advances in the Theory of Control, Signals and Systems with Physical Modeling Flatness Characterization: Two Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . Felix Antritter, Jean L´evinDocID: 1fzDh - View Document | |
EUROGRAPHICSI. Navazo, P. Poulin (Guest Editors) Volume), Number 2 Animal Locomotion Controllers From ScratchDocID: 1aT9e - View Document |