<--- Back to Details
First PageDocument Content
Computational geometry / Euclidean plane geometry / Rotating calipers / Convex hull / Area / Convex and concave polygons / Pi / Minimum bounding box algorithms / Approximations of π / Geometry / Convex geometry / Polygons
Date: 2009-08-21 11:35:38
Computational geometry
Euclidean plane geometry
Rotating calipers
Convex hull
Area
Convex and concave polygons
Pi
Minimum bounding box algorithms
Approximations of π
Geometry
Convex geometry
Polygons

Add to Reading List

Source URL: web.cs.swarthmore.edu

Download Document from Source Website

File Size: 31,62 KB

Share Document on Facebook

Similar Documents

Flip-Flop: Convex Hull Construction via Star-Shaped Polyhedron in 3D

DocID: 1tNUv - View Document

Flip- Flop : Convex Hull Construction via Star-Shaped Polyhedron in 3D Mingcen Gao Thanh-Tung Cao Tiow-Seng Tan

DocID: 1tLDX - View Document

2016 29th SIBGRAPI Conference on Graphics, Patterns and Images Convex Hull for Probabilistic Points F. Betul Atalay Sorelle A. Friedler

DocID: 1tI0s - View Document

Riemann surfaces

Inverse Problems–1052. Printed in the UK PII: S0266Numerical method for finding the convex hull of an inclusion in conductivity from boundary measurements

DocID: 1rpLW - View Document

Computer science / Geometry / Computing / Computational geometry / Triangulation / Delaunay triangulation / Kinetic data structure / John Hershberger / Convex hull / Voronoi diagram / Leonidas J. Guibas / Closest pair of points problem

Kinetic Data Structures: Animating Proofs Through Time Julien Basch∗ Jo˜ao Comba† Leonidas J. Guibas‡ John Hershberger§ Craig D. Silverstein¶ Li Zhangk When motion begins, each certificate remains valid until th

DocID: 1rmpv - View Document