<--- Back to Details
First PageDocument Content
Numerical software / Data types / Logarithms / Integer sequences / MPFR / Arbitrary-precision arithmetic / Error function / Approximations of π / GNU Multiple Precision Arithmetic Library / Mathematics / Mathematical analysis / Computer arithmetic
Date: 2013-09-27 03:17:35
Numerical software
Data types
Logarithms
Integer sequences
MPFR
Arbitrary-precision arithmetic
Error function
Approximations of π
GNU Multiple Precision Arithmetic Library
Mathematics
Mathematical analysis
Computer arithmetic

Add to Reading List

Source URL: cran.r-project.org

Download Document from Source Website

File Size: 138,73 KB

Share Document on Facebook

Similar Documents

Computer arithmetic / Computing / Mathematics / Theoretical computer science / GNU MPFR / Extended precision / Quadruple-precision floating-point format / Rounding / Single-precision floating-point format / Double-precision floating-point format / IEEE floating point / Precision

Why and how to use arbitrary precision Kaveh R. Ghazi Vincent Lefèvre Philippe Théveny

DocID: 1ratl - View Document

Mathematics / Computer arithmetic / Smalltalk / Number / Single-precision floating-point format / Primitive data type / Continued fraction / Q / Arbitrary-precision arithmetic / Floating point / Fixed-point arithmetic / Real number

Introduction to Smalltalk - Chapter 5 - Numbers  Ivan TomekChapter 5 - Numbers Overview VisualWorks library contains many classes representing numbers of various kinds, mainly because

DocID: 1quIM - View Document

Mathematics / Computer arithmetic / Mathematical analysis / Computing / Numerical analysis / Binary arithmetic / Affine arithmetic / Affine geometry / Interval arithmetic / Interval / Arbitrary-precision arithmetic / Precision

Vitae for Nathalie Revol Nathalie REVOL Research scientist at INRIA Birth date: children (born in 2005 andCitizenship: french

DocID: 1ohU9 - View Document

Computer arithmetic / Arithmetic / Mathematics / Computing / Rounding / IEEE floating point / GNU MPFR / Arbitrary-precision arithmetic / Division algorithm / Unit in the last place / Pi / Double-precision floating-point format

Floating-point arithmetic in the Coq system a,1 Guillaume Melquiond a INRIA Saclay  Île-de-France,

DocID: 1o0ql - View Document

Computer arithmetic / GNU MPFR / Interval arithmetic / Floating point / Rounding / GNU Multiple Precision Arithmetic Library / Precision / Machine epsilon / Arbitrary-precision arithmetic / IEEE floating point / Significant figures / Interval

Motivations for an arbitrary precision interval arithmetic and the MPFI library N. Revol ()∗ ´ INRIA, Project Arenaire, LIP (CNRS/ENSL/INRIA/UCBL), Ecole Normale

DocID: 1mOXx - View Document