<--- Back to Details
First PageDocument Content
Bioinformatics / Gene expression / Artificial neural network / Computational neuroscience / Mathematical psychology / DNA microarray
Date: 2002-01-17 03:51:05
Bioinformatics
Gene expression
Artificial neural network
Computational neuroscience
Mathematical psychology
DNA microarray

Genome Informatics 12: 247–Prognostic Prediction of Lymphoma by Gene Expression Profiling Using FNN

Add to Reading List

Source URL: www.jsbi.org

Download Document from Source Website

File Size: 75,29 KB

Share Document on Facebook

Similar Documents

Journal of Computational Neuroscience 18, 105–121, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.  A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Im

Journal of Computational Neuroscience 18, 105–121, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.  A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Im

DocID: 1vcJi - View Document

munich  Bernstein Center for Computational Neuroscience Munich

munich Bernstein Center for Computational Neuroscience Munich

DocID: 1vcv8 - View Document

Blending computational and experimental neuroscience

Blending computational and experimental neuroscience

DocID: 1v9kZ - View Document

Florentin Wörgötter Bernstein Center for Computational Neuroscience Göttingen Florentin Wörgötter studied biology and mathematics at the University of Düsseldorf, Germany. He received a Ph.D. degree, studying

Florentin Wörgötter Bernstein Center for Computational Neuroscience Göttingen Florentin Wörgötter studied biology and mathematics at the University of Düsseldorf, Germany. He received a Ph.D. degree, studying

DocID: 1v914 - View Document

Nonlinear synaptic interaction as a computational resource in the Neural Engineering Framework Andreas Stöckel, Aaron R. Voelker, Chris Eliasmith Centre for Theoretical Neuroscience, University of Waterloo {astoecke, ar

Nonlinear synaptic interaction as a computational resource in the Neural Engineering Framework Andreas Stöckel, Aaron R. Voelker, Chris Eliasmith Centre for Theoretical Neuroscience, University of Waterloo {astoecke, ar

DocID: 1uuia - View Document