<--- Back to Details
First PageDocument Content
Discrete mathematics / Thue–Morse sequence / Sturmian word / Axel Thue / Sequence / Thue / Shift space / Fibonacci word / Lyndon word / Combinatorics / Mathematics / Combinatorics on words
Date: 2008-02-14 12:01:11
Discrete mathematics
Thue–Morse sequence
Sturmian word
Axel Thue
Sequence
Thue
Shift space
Fibonacci word
Lyndon word
Combinatorics
Mathematics
Combinatorics on words

Add to Reading List

Source URL: www-igm.univ-mlv.fr

Download Document from Source Website

File Size: 543,26 KB

Share Document on Facebook

Similar Documents

3 May 1998 ITERATED RANDOM FUNCTIONS Persi Diaconis Department of Mathematics & ORIE Cornell University

3 May 1998 ITERATED RANDOM FUNCTIONS Persi Diaconis Department of Mathematics & ORIE Cornell University

DocID: 1xVWv - View Document

SCAN 2018 Post-conference Proceedings Special Issue of Journal of Computational and Applied Mathematics Call for Papers Special Issue on the 18th International Symposium on Scientific Computing, Computer Arithmetic,

SCAN 2018 Post-conference Proceedings Special Issue of Journal of Computational and Applied Mathematics Call for Papers Special Issue on the 18th International Symposium on Scientific Computing, Computer Arithmetic,

DocID: 1xVSx - View Document

MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000–000 SXXBETTER POLYNOMIALS FOR GNFS SHI BAI, CYRIL BOUVIER, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000–000 SXXBETTER POLYNOMIALS FOR GNFS SHI BAI, CYRIL BOUVIER, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

DocID: 1xVRE - View Document

A characterization of Riemann integrability Cosmin Burtea Faculty of Mathematics,

A characterization of Riemann integrability Cosmin Burtea Faculty of Mathematics, "Al. I. Cuza" University of Ia³i, Romania Abstract We prove a characterization of Riemann integrability by using some Darboux-like sums w

DocID: 1xVOd - View Document

Mathematics 7-12, BS

Mathematics 7-12, BS "DBEFNJD.BQ  5IF"DBEFNJD.BQTFSWFTBTBTVHHFTUFEDPVSTFTFRVFODFPOMZ4UVEFOUTBSFOPUMJNJUFEUPUIJTQMBOJUJTNFBOUUPCFVTFEBT

DocID: 1xVH0 - View Document