<--- Back to Details
First PageDocument Content
Z notation / Urelements / Axioms of set theory / Zermelo–Fraenkel set theory / New Foundations / Axiom of choice / Von Neumann universe / Axiom of regularity / Large cardinal / Mathematical logic / Set theory / Mathematics
Date: 2007-11-15 13:55:59
Z notation
Urelements
Axioms of set theory
Zermelo–Fraenkel set theory
New Foundations
Axiom of choice
Von Neumann universe
Axiom of regularity
Large cardinal
Mathematical logic
Set theory
Mathematics

Add to Reading List

Source URL: research.microsoft.com

Download Document from Source Website

File Size: 206,07 KB

Share Document on Facebook

Similar Documents

Axioms of set theory / Z notation / Urelements / Zermelo–Fraenkel set theory / S / Constructible universe / Zermelo set theory / Naive set theory / Axiom of empty set / Mathematical logic / Set theory / Mathematics

Basic set theory Richard Pettigrew January 26, 2012 1

DocID: Qu0M - View Document

Computability theory / Complexity classes / Urelements / Z notation / S / Naive set theory / Constructible universe / Arithmetical hierarchy / Axiom of extensionality / Mathematical logic / Mathematics / Set theory

THE ITERATIVE CONCEPTION OF SET

DocID: OCnw - View Document

Axioms of set theory / Z notation / Urelements / Zermelo–Fraenkel set theory / Constructible universe / Axiom of choice / First-order logic / Axiom / Function / Mathematical logic / Logic / Mathematics

A New System of Axioms Instead of ZF (ver[removed]Use a Latin font such as Times New Roman, please.] [If not word-wrapped, see "Word-wrap" of HELP in your software.]

DocID: 5yHq - View Document

Axioms of set theory / Z notation / Urelements / Self-reference / Zermelo–Fraenkel set theory / S / Axiom of choice / New Foundations / Axiom of regularity / Mathematical logic / Set theory / Mathematics

Nonstandard Set Theories and Information Management VAROL AKMAN

DocID: 3WfL - View Document

Urelements / Z notation / New Foundations / Type theory / Willard Van Orman Quine / Zermelo–Fraenkel set theory / Axiom of choice / Zermelo set theory / S / Mathematical logic / Set theory / Mathematics

Proof, Sets, and Logic M. Randall Holmes November 30, 2012

DocID: 2Krn - View Document