<--- Back to Details
First PageDocument Content
Mathematics / Algebra / Equations / Linear algebra / Monomial / Ordinary differential equations / Recurrence relation / Equation solving / Elementary algebra / Equation / System of linear equations / Algebraic curve
Date: 2018-05-02 19:51:01
Mathematics
Algebra
Equations
Linear algebra
Monomial
Ordinary differential equations
Recurrence relation
Equation solving
Elementary algebra
Equation
System of linear equations
Algebraic curve

Asymptotically faster quantum algorithms to solve multivariate quadratic equations Daniel J. Bernstein1 and Bo-Yin Yang2 1 Department of Computer Science

Add to Reading List

Source URL: precision.moscito.org

Download Document from Source Website

File Size: 337,64 KB

Share Document on Facebook

Similar Documents

Solving Quadratic Equations A quadratic equation is any equation of the form, ax2 + bx + c = 0 (1)

Solving Quadratic Equations A quadratic equation is any equation of the form, ax2 + bx + c = 0 (1)

DocID: 1v4ps - View Document

Elimination Method System of Equations When solving a system of equations, you are given two equations and you are given the task of finding the x and y variables for each equation. This can be accomplished easily using

Elimination Method System of Equations When solving a system of equations, you are given two equations and you are given the task of finding the x and y variables for each equation. This can be accomplished easily using

DocID: 1uEU1 - View Document

Classroom Voting Questions: Algebra  Section 7.5: Complex Numbers and Solving Quadratic Equations with Complex Solutions 1. True or False: The roots and the x-intercepts of an equation are the same. (a) True, and I am ve

Classroom Voting Questions: Algebra Section 7.5: Complex Numbers and Solving Quadratic Equations with Complex Solutions 1. True or False: The roots and the x-intercepts of an equation are the same. (a) True, and I am ve

DocID: 1uE8j - View Document

Variation of Parameters The general solution to a second order non- homogeneous differential equation can be reduced to solving 2 first order differential equations. This differs from reduction of order in that we have 2

Variation of Parameters The general solution to a second order non- homogeneous differential equation can be reduced to solving 2 first order differential equations. This differs from reduction of order in that we have 2

DocID: 1tYRP - View Document

EPJ Web of Conferences 113, DOI: epjconf  C Owned by the authors, published by EDP Sciences, 2016  Solving the time-dependent few-body Schrödinger equation

EPJ Web of Conferences 113, DOI: epjconf  C Owned by the authors, published by EDP Sciences, 2016 Solving the time-dependent few-body Schrödinger equation

DocID: 1rPOX - View Document