<--- Back to Details
First PageDocument Content
Numerical linear algebra / Numerical software / Matrices / Matrix theory / LAPACK / Math Kernel Library / Tridiagonal matrix / Matrix / Multi-core processor / Algebra / Linear algebra / Mathematics
Date: 2013-11-22 09:22:21
Numerical linear algebra
Numerical software
Matrices
Matrix theory
LAPACK
Math Kernel Library
Tridiagonal matrix
Matrix
Multi-core processor
Algebra
Linear algebra
Mathematics

Scalable Direct Eigenvalue Solver ELPA Scalable Direct Eigenvalue Solver ELPA for Symmetric Matrices for Symmetric Matrices http://elpa.rzg.mpg.de

Add to Reading List

Source URL: elpa.rzg.mpg.de

Download Document from Source Website

File Size: 1,11 MB

Share Document on Facebook

Similar Documents

2  C++ API for BLAS and LAPACK Mark Gates Piotr Luszczek Ahmad Abdelfattah

2 C++ API for BLAS and LAPACK Mark Gates Piotr Luszczek Ahmad Abdelfattah

DocID: 1xVIh - View Document

How LAPACK library enables Microsoft Visual Studio support with CMake and LAPACKE Julie Langou1, Bill Hoffman2, Brad King2 1.  University of Tennessee Knoxville, USA

How LAPACK library enables Microsoft Visual Studio support with CMake and LAPACKE Julie Langou1, Bill Hoffman2, Brad King2 1. University of Tennessee Knoxville, USA

DocID: 1udh7 - View Document

Microsoft PowerPoint - lacsi-sans-1006

Microsoft PowerPoint - lacsi-sans-1006

DocID: 1ru2M - View Document

MAGMA (Matrix Algebra on GPU and Multicore Architectures) is a collection of next generation linear algebra libraries for heterogeneous architectures. MAGMA is designed and implemented by the team that developed LAPACK a

MAGMA (Matrix Algebra on GPU and Multicore Architectures) is a collection of next generation linear algebra libraries for heterogeneous architectures. MAGMA is designed and implemented by the team that developed LAPACK a

DocID: 1r9v4 - View Document

Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelerators. Emmanuel Agullo, C´edric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond Namyst, Jean Roman, Samuel Thibault, Stanimire Tomov

Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelerators. Emmanuel Agullo, C´edric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond Namyst, Jean Roman, Samuel Thibault, Stanimire Tomov

DocID: 1qb5g - View Document