<--- Back to Details
First PageDocument Content
Representation theory / Lie algebras / Monoidal categories / Ring theory / Quantum group / Weight / Universal enveloping algebra / Frobenius algebra / Braided Hopf algebra / Abstract algebra / Algebra / Hopf algebras
Date: 2008-02-26 17:10:00
Representation theory
Lie algebras
Monoidal categories
Ring theory
Quantum group
Weight
Universal enveloping algebra
Frobenius algebra
Braided Hopf algebra
Abstract algebra
Algebra
Hopf algebras

On quantum group SLqarXiv:hep-thDec 94 Joseph Bernstein Tel-Aviv University

Add to Reading List

Source URL: www.tanyakhovanova.com

Download Document from Source Website

File Size: 168,96 KB

Share Document on Facebook

Similar Documents

CSIDH: An Efficient Post-Quantum Commutative Group Action Wouter Castryck1 , Tanja Lange2 , Chloe Martindale2 , Lorenz Panny2 , and Joost Renes3 , , chloemartindale@

DocID: 1vlNa - View Document

東京大学 先端科学技術研究センター 量子情報物理工学分野 中村・宇佐見研究室 Nakamura-Usami Group, Quantum Information Physics and Engineering, Research Center for Advanced Science and Tec

DocID: 1v0Li - View Document

Review of SL2 (R) by Serge Lang Given the formalism of quantum mechanics, the study of those of its laws which are invariant under the Lorentz group inevitably leads to infinite-dimensional representations of both the ho

DocID: 1uvS5 - View Document

特定国立研究開発法人 物質・材料研究機構 機能性材料研究拠点 量子輸送特性グループ Quantum Transport Properties Group, Research Center for Functional Materials, National Institute for M

DocID: 1ubTM - View Document

東大・上田研究室 Ueda Group (Univ. of Tokyo) 冷却原子気体の研究 Theoretical study on quantum phases of ultracold atomic gases

DocID: 1u22K - View Document