<--- Back to Details
First PageDocument Content
Differential geometry / Curvature / Topological spaces / Sectional curvature / Cartan–Hadamard theorem / CAT(k) space / Metric space / Hyperbolic group / Non-positive curvature / Geometry / Metric geometry / Riemannian geometry
Date: 2009-10-18 18:44:06
Differential geometry
Curvature
Topological spaces
Sectional curvature
Cartan–Hadamard theorem
CAT(k) space
Metric space
Hyperbolic group
Non-positive curvature
Geometry
Metric geometry
Riemannian geometry

Martin R. Bridson Andr´e Haefliger

Add to Reading List

Source URL: www.math.bgu.ac.il

Download Document from Source Website

File Size: 3,83 MB

Share Document on Facebook

Similar Documents

Differential geometry / Curvature / Riemannian geometry / Hyperbolic geometry / Hyperbolic group / Sectional curvature / Cartan–Hadamard theorem / Δ-hyperbolic space / CAT(k) space / Geometry / Mathematics / Metric geometry

CONSTRUCTING NON-POSITIVELY CURVED SPACES AND GROUPS JON MCCAMMOND 1 Abstract. The theory of non-positively curved spaces and groups is tremendously powerful and has enormous consequences for the groups and spaces involv

DocID: 5LGw - View Document

Algebraic topology / Geodesic / Gauss–Bonnet theorem / Triangle / Curvature / Graph / Cartan–Hadamard theorem / Euler characteristic / Orbifold / Geometry / Mathematics / Abstract algebra

TRIANGLES, SQUARES AND GEODESICS RENA LEVITT AND JON MCCAMMOND Abstract. In the early 1990s Steve Gersten and Hamish Short proved

DocID: 5L60 - View Document

Differential geometry / Curvature / Topological spaces / Sectional curvature / Cartan–Hadamard theorem / CAT(k) space / Metric space / Hyperbolic group / Non-positive curvature / Geometry / Metric geometry / Riemannian geometry

Martin R. Bridson Andr´e Haefliger

DocID: 4uZ6 - View Document

Algebra / Linear algebra / Hadamard space / Hilbert space / Cartan–Hadamard theorem / Convex function / Triangle inequality / Inner product space / Geodesic / Geometry / Mathematics / Metric geometry

PDF Document

DocID: 1jrM - View Document