<--- Back to Details
First PageDocument Content
Set theory / Infinity / Elementary mathematics / Countable set / Cardinality / Georg Cantor / Real number / Aleph number / Number / Mathematics / Mathematical logic / Cardinal numbers
Date: 2015-03-18 05:15:37
Set theory
Infinity
Elementary mathematics
Countable set
Cardinality
Georg Cantor
Real number
Aleph number
Number
Mathematics
Mathematical logic
Cardinal numbers

17 March[removed]Cantor’s Infinities

Add to Reading List

Source URL: www.gresham.ac.uk

Download Document from Source Website

File Size: 265,68 KB

Share Document on Facebook

Similar Documents

El intervalo [0,1] no es numerable Georg Cantor enunció y demostró que los números reales no pueden ser numerados, y dio en su momento la demostración conocida luego como el método diagonal de Cantor o quizá, al de

DocID: 1sYiF - View Document

51. Bundeswettbewerb 2016 in Paderborn Die Teilnehmer aus Sachsen-Anhalt Annelie Elisabeth Dörheit (16) Georg-Cantor-Gymnasium, Halle (Saale)

DocID: 1s7wi - View Document

Fractals / Dimension theory / Georg Cantor / Mathematical structures / Topological spaces / Cantor space / Self-similarity / Topology / Hausdorff dimension / Space / Homeomorphism / Invariant

Research Statement: Casey Donoven The Cantor space is the set of all infinite sequences over a finite alaphabet X, which is a both a topological and metric space. My research to date has focused on studying structures re

DocID: 1puEv - View Document

Functions and mappings / Calculus / Infinitesimal / Series / Limit of a function / Georg Cantor / Paul du Bois-Reymond / Emil du Bois-Reymond / Infinity / Derivative / Integral / Norm

The Infinite and Infinitesimal Quantities of du Bois-Reymond and their Reception GORDON FISHER Communicated by M. KLINE

DocID: 1pmLX - View Document

CHAPTER 1 1 The Anatomy of the Infinite "The essence of mathematics is its freedom." —Georg Cantor

DocID: 1ngMR - View Document