<--- Back to Details
First PageDocument Content
Mathematics / Algebra / Theoretical computer science / Modular arithmetic / Logic in computer science / Congruence relation / Equivalence / Closure / Rewriting / Congruence lattice problem / Congruence subgroup
Date: 2005-02-02 07:20:48
Mathematics
Algebra
Theoretical computer science
Modular arithmetic
Logic in computer science
Congruence relation
Equivalence
Closure
Rewriting
Congruence lattice problem
Congruence subgroup

Proof-producing Congruence Closure Robert Nieuwenhuis? and Albert Oliveras?? Technical University of Catalonia, Jordi Girona 1, 08034 Barcelona, Spain www.lsi.upc.es/~roberto www.lsi.upc.es/~oliveras Abstract. Many appl

Add to Reading List

Source URL: www.lsi.upc.edu

Download Document from Source Website

File Size: 222,86 KB

Share Document on Facebook

Similar Documents

Continued fractions and number systems: applications to correctly-rounded implementations of elementary functions and modular arithmetic. Mourad Gouicem PEQUAN Team, LIP6/UPMC

Continued fractions and number systems: applications to correctly-rounded implementations of elementary functions and modular arithmetic. Mourad Gouicem PEQUAN Team, LIP6/UPMC

DocID: 1uA3L - View Document

Galois representations associated to modular forms Johan BosmanThese are notes from a talk given at an intercity seminar arithmetic geometry. The main reference is [1], where more details and further referenc

Galois representations associated to modular forms Johan BosmanThese are notes from a talk given at an intercity seminar arithmetic geometry. The main reference is [1], where more details and further referenc

DocID: 1uy0a - View Document

SPECIAL SECTION ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS  Improving residue number system multiplication with more balanced moduli sets and enhanced modular arithmetic structures R. Chaves and L. Sousa

SPECIAL SECTION ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS Improving residue number system multiplication with more balanced moduli sets and enhanced modular arithmetic structures R. Chaves and L. Sousa

DocID: 1u5nt - View Document

Arithmetic and Diophantine Geometry 14Gxx [1] Matthew H. Baker, Enrique Gonz´alez-Jim´enez, Josep Gonz´alez, and Bjorn Poonen, Finiteness results for modular curves of genus at least 2, Amer. J. Math), no.

Arithmetic and Diophantine Geometry 14Gxx [1] Matthew H. Baker, Enrique Gonz´alez-Jim´enez, Josep Gonz´alez, and Bjorn Poonen, Finiteness results for modular curves of genus at least 2, Amer. J. Math), no.

DocID: 1u3w4 - View Document

MODULAR ARITHMETIC  5 minute review. Remind students what addition and multiplication mod m means and the notation they saw in Semester 1, e.g. 3 + 4 ≡ 2 (mod 5) and 3 × 3 ≡ 4 (mod 5). Introduce Zm = {0, 1, . . . ,

MODULAR ARITHMETIC 5 minute review. Remind students what addition and multiplication mod m means and the notation they saw in Semester 1, e.g. 3 + 4 ≡ 2 (mod 5) and 3 × 3 ≡ 4 (mod 5). Introduce Zm = {0, 1, . . . ,

DocID: 1tE3z - View Document