<--- Back to Details
First PageDocument Content
Curves / Geometry / Mathematics / Space / Tangent / Differential equation / Calculus / Parabola / Subtangent / Tractrix / Differential calculus / Equation
Date: 2013-11-04 12:20:24
Curves
Geometry
Mathematics
Space
Tangent
Differential equation
Calculus
Parabola
Subtangent
Tractrix
Differential calculus
Equation

How Euler Did It by Ed Sandifer Curves and paradox October 2008 In the two centuries between Descartesand Dirichlet), the mathematics of curves gradually shifted from the study of the means by whi

Add to Reading List

Source URL: eulerarchive.maa.org

Download Document from Source Website

File Size: 293,63 KB

Share Document on Facebook

Similar Documents

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

DocID: 1xUKG - View Document

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

DocID: 1vbJA - View Document

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

DocID: 1vb7j - View Document

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy  y ( y

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy y ( y

DocID: 1v5d6 - View Document

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

DocID: 1v4OQ - View Document