<--- Back to Details
First PageDocument Content
Machine learning / Linear algebra / Matrix theory / Dimension reduction / Principal component analysis / Linear discriminant analysis / Kernel principal component analysis / Unsupervised learning / Supervised learning / Statistics / Algebra / Multivariate statistics
Date: 2008-09-05 22:04:31
Machine learning
Linear algebra
Matrix theory
Dimension reduction
Principal component analysis
Linear discriminant analysis
Kernel principal component analysis
Unsupervised learning
Supervised learning
Statistics
Algebra
Multivariate statistics

Add to Reading List

Source URL: www.csi.ucd.ie

Download Document from Source Website

File Size: 901,18 KB

Share Document on Facebook

Similar Documents

Algebra / Mathematics / Linear algebra / Multivariate statistics / Hilbert space / Operator theory / Geostatistics / Kernel method / Transfer RNA / Kernel principal component analysis / Positive-definite kernel / Kernel

Genome Informatics 13: 112–Marginalized Kernels for RNA Sequence Data Analysis Taishin Kin

DocID: 1riZQ - View Document

Algebra / Mathematics / Linear algebra / Numerical linear algebra / Dimension reduction / Functional analysis / Multivariate statistics / Linear map / Singular value decomposition / Kernel method / Principal component analysis / Kernel

Ghostscript wrapper for X:ersV2011er_final.pdf

DocID: 1r9tq - View Document

Algebra / Mathematics / Statistics / Multivariate statistics / Linear algebra / Functional analysis / Dimension reduction / Geostatistics / Kernel principal component analysis / Nonlinear dimensionality reduction / Principal component analysis / Dimensionality reduction

Semi-Supervised Dimensionality Reduction for Analyzing High-Dimensional Data with Constraints Su Yan∗∗ IBM Almaden Research Center, 650 Harry Rd San Jose, CA 95120, USA Sofien Bouaziz

DocID: 1qBTn - View Document

Algebra / Mathematics / Linear algebra / Multivariate statistics / Matrix theory / Dimension reduction / Interpolation / Principal component analysis / Eigenvalues and eigenvectors / Kernel principal component analysis / Eigendecomposition of a matrix / Radial basis function

DOI: j01783.x COMPUTER GRAPHICS forum

DocID: 1qyoO - View Document

Algebra / Mathematics / Linear algebra / Functional analysis / Numerical linear algebra / Abstract algebra / Matrix theory / Matrix / Kernel / Linear map / Eigenvalues and eigenvectors / Principal component analysis

Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion Onur C. Hamsici1 , Paulo F.U. Gotardo2 , and Aleix M. Martinez2 1 Qualcomm Research, San Diego, CA, USA

DocID: 1qrSz - View Document