<--- Back to Details
First PageDocument Content
Computational neuroscience / Artificial intelligence / Machine learning algorithms / Neuroscience / Applied mathematics / Artificial neural networks / Reinforcement learning / Q-learning / Convolutional neural network / Distributed artificial intelligence / Deep learning / Intelligent agent
Date: 2017-11-03 18:51:37
Computational neuroscience
Artificial intelligence
Machine learning algorithms
Neuroscience
Applied mathematics
Artificial neural networks
Reinforcement learning
Q-learning
Convolutional neural network
Distributed artificial intelligence
Deep learning
Intelligent agent

Cooperative Multi-Agent Control Using Deep Reinforcement Learning Jayesh K. Gupta Maxim Egorov

Add to Reading List

Source URL: platformlab.stanford.edu

Download Document from Source Website

File Size: 605,76 KB

Share Document on Facebook

Similar Documents

Journal of Computational Neuroscience 18, 105–121, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.  A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Im

Journal of Computational Neuroscience 18, 105–121, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.  A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Im

DocID: 1vcJi - View Document

munich  Bernstein Center for Computational Neuroscience Munich

munich Bernstein Center for Computational Neuroscience Munich

DocID: 1vcv8 - View Document

Blending computational and experimental neuroscience

Blending computational and experimental neuroscience

DocID: 1v9kZ - View Document

Florentin Wörgötter Bernstein Center for Computational Neuroscience Göttingen Florentin Wörgötter studied biology and mathematics at the University of Düsseldorf, Germany. He received a Ph.D. degree, studying

Florentin Wörgötter Bernstein Center for Computational Neuroscience Göttingen Florentin Wörgötter studied biology and mathematics at the University of Düsseldorf, Germany. He received a Ph.D. degree, studying

DocID: 1v914 - View Document

Nonlinear synaptic interaction as a computational resource in the Neural Engineering Framework Andreas Stöckel, Aaron R. Voelker, Chris Eliasmith Centre for Theoretical Neuroscience, University of Waterloo {astoecke, ar

Nonlinear synaptic interaction as a computational resource in the Neural Engineering Framework Andreas Stöckel, Aaron R. Voelker, Chris Eliasmith Centre for Theoretical Neuroscience, University of Waterloo {astoecke, ar

DocID: 1uuia - View Document