<--- Back to Details
First PageDocument Content
Nanoimprint lithography / Microtechnology / Nanolithography / Semiconductor device fabrication / Electronics manufacturing / Lithography / Microelectromechanical systems / Electron beam lithography / Coating / Chemistry / Materials science / Technology
Date: 2013-10-29 07:46:04
Nanoimprint lithography
Microtechnology
Nanolithography
Semiconductor device fabrication
Electronics manufacturing
Lithography
Microelectromechanical systems
Electron beam lithography
Coating
Chemistry
Materials science
Technology

Nanofabrication state-of-the-art equipment, and with access to nearby cleanroom facilities, ICN2 offers a vast array of nanofabrication services for nanostructured materials and devices of varied composition for myriad a

Add to Reading List

Source URL: www.icn.cat

Download Document from Source Website

File Size: 1,94 MB

Share Document on Facebook

Similar Documents

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 6, DECEMBERThermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 6, DECEMBERThermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable

DocID: 1u77o - View Document

Microsoft Word - 03-YCai_MEMSIC_CStudy_jw6_dh1_20081023.doc

Microsoft Word - 03-YCai_MEMSIC_CStudy_jw6_dh1_20081023.doc

DocID: 1r6kx - View Document

VG800  LOW DRIFT MEMS VERTICAL GYRO The MEMSIC VG800 establishes a new level of performance for standalone “unaided” inertial

VG800 LOW DRIFT MEMS VERTICAL GYRO The MEMSIC VG800 establishes a new level of performance for standalone “unaided” inertial

DocID: 1r3e5 - View Document

Combinatorial Multilevel Mold Insert Using Micromachining and X-ray Lithography V. Singh1, J. Goettert1, O. Jinka1,2,* 1  Center for Advanced Microstructures and Devices (CAMD)

Combinatorial Multilevel Mold Insert Using Micromachining and X-ray Lithography V. Singh1, J. Goettert1, O. Jinka1,2,* 1 Center for Advanced Microstructures and Devices (CAMD)

DocID: 1qVW9 - View Document

PRESS RELEASERUSNANO Exits from SiTime with Yield Above 25% RUSNANO is exiting its portfolio investment in SiTime Corporation (Sunnyvale, USA), which develops high-performance semiconductor chips using MEMS t

PRESS RELEASERUSNANO Exits from SiTime with Yield Above 25% RUSNANO is exiting its portfolio investment in SiTime Corporation (Sunnyvale, USA), which develops high-performance semiconductor chips using MEMS t

DocID: 1qQgR - View Document