<--- Back to Details
First PageDocument Content
Elliptic curve cryptography / Pairing-based cryptography / Public-key cryptography / Group theory / Finite fields / Tate pairing / Hyperelliptic curve / Weil pairing / BonehLynnShacham / BonehFranklin scheme / Pairing / ID-based encryption
Date: 2009-07-13 10:25:27
Elliptic curve cryptography
Pairing-based cryptography
Public-key cryptography
Group theory
Finite fields
Tate pairing
Hyperelliptic curve
Weil pairing
BonehLynnShacham
BonehFranklin scheme
Pairing
ID-based encryption

Bilinear Pairings in Cryptography Master thesis #603 by

Add to Reading List

Source URL: www.math.ru.nl

Download Document from Source Website

File Size: 399,72 KB

Share Document on Facebook

Similar Documents

Abstract algebra / Algebra / Mathematics / Algebraic geometry / Homological algebra / Algebraic varieties / Finite fields / Conjectures / Weil conjectures / Projective variety / Smooth scheme / Cohomology

Introduction The Weil conjectures Threefolds Fourfolds Cubic hypersurfaces over finite fields

DocID: 1xV7r - View Document

Mathematics / Multiplication / Polynomials / Algebra / Multiplication algorithm / Computer algebra / ToomCook multiplication / Karatsuba algorithm / Degree of a polynomial / Finite field / Remainder / Computational complexity of mathematical operations

Smoothness Testing of Polynomials over Finite Fields Jean-Franc ¸ ois Biasse and Michael J. Jacobson Jr. Department of Computer Science, University of Calgary 2500 University Drive NW

DocID: 1xU81 - View Document

Cryptology Fall 2017 Chloe Martindale TU/e September 28, 2017 These notes are based on notes by Tanja Lange and Ruben Niederhagen. Following on from last weeks lecture on finite fields, we now see how to use

DocID: 1vqjO - View Document

On the existence of dimension zero divisors on curves over finite fields Christophe Ritzenthaler Joint work with Stéphane Ballet and Robert Rolland Institut de Mathématiques de Luminy

DocID: 1vhKQ - View Document

Endomorphism rings of elliptic curves over finite fields by David Kohel B.S. Biochemstry (Texas A&M UniversityB.S. Mathematics (Texas A&M University) 1989

DocID: 1vbHJ - View Document