<--- Back to Details
First PageDocument Content
Field theory / Polynomials / Ring theory / Field extension / Minimal polynomial / Polynomial ring / Finite field / Vector space / Conjugate element / Abstract algebra / Algebra / Mathematics
Date: 2009-02-05 09:30:59
Field theory
Polynomials
Ring theory
Field extension
Minimal polynomial
Polynomial ring
Finite field
Vector space
Conjugate element
Abstract algebra
Algebra
Mathematics

6. Fields I 6.1

Add to Reading List

Source URL: www.math.umn.edu

Download Document from Source Website

File Size: 191,15 KB

Share Document on Facebook

Similar Documents

NONCOHERENCE OF A CAUSAL WIENER ALGEBRA USED IN CONTROL THEORY AMOL SASANE Abstract. Let C+ := {s ∈ C | Re(s) ≥ 0} and let A denote the ring ) (

DocID: 1u5my - View Document

The O-Ring Theory of Economic Development Author(s): Michael Kremer Source: The Quarterly Journal of Economics, Vol. 108, No. 3 (Aug., 1993), ppPublished by: The MIT Press Stable URL: http://www.jstor.org/stabl

DocID: 1tKf5 - View Document

E∞ RING THEORY J.P. MAY http://www.math.uchicago.edu/ may/RANT/ Date: March 13, 2008.

DocID: 1sGKb - View Document

K-THEORY FOR RING C*-ALGEBRAS – THE CASE OF NUMBER FIELDS WITH HIGHER ROOTS OF UNITY arXiv:1201.4296v2 [math.OA] 4 Oct 2012 ¨

DocID: 1sER8 - View Document

THE HOPF RING FOR P (n) DOUGLAS C. RAVENEL AND W. STEPHEN WILSON Abstract. We show that E∗ (P (n) ), the E-homology of the Ω-spectrum for ∗ P (n), is an E∗ free Hopf ring for E a complex oriented theory with In s

DocID: 1rV8C - View Document