First Page | Document Content | |
---|---|---|
Date: 2011-09-30 05:00:08Analysis Functional analysis Themistocles M. Rassias Metric geometry Cauchy–Rassias stability Hyers–Ulam–Rassias stability Aleksandrov–Rassias problem Aleksandr Danilovich Aleksandrov Mathematical analysis Mathematics Functional equations | Add to Reading ListSource URL: www.emis.deDownload Document from Source WebsiteFile Size: 239,45 KBShare Document on Facebook |
Coarse Geometry and Randomness Itai Benjamini October 30, 2013 Contents 1 Introductory graph and metric notionsDocID: 1xW27 - View Document | |
Vladimir S. Matveev (Jena) Vladimir S. Matveev (Jena) How to reconstruct a metric by its unparameterized geodesics. Lorenz Geometry, Granada,DocID: 1rR2F - View Document | |
A Lorentz metric on the manifold of positive definite (2 x 2)-matrices and foliations by ellipses Marcos Salvai ´ FaMAF (UNC) – CIEM (CONICET), Cordoba,DocID: 1rsXz - View Document | |
Lassoing Phylogenetic Trees Katharina Huber, School of Computing Sciences, University of East Anglia, UK September 23, 2015DocID: 1rrmV - View Document | |
HagenQuasiArb10Feb2103.dviDocID: 1rmpQ - View Document |