<--- Back to Details
First PageDocument Content
Galois theory / Number theory / Finite fields / Algebraic number field / Field theory / Galois module / Local Tate duality / Ramification group / Étale morphism / Abstract algebra / Algebraic number theory / Algebra
Date: 2003-09-04 15:45:41
Galois theory
Number theory
Finite fields
Algebraic number field
Field theory
Galois module
Local Tate duality
Ramification group
Étale morphism
Abstract algebra
Algebraic number theory
Algebra

ALGEBRAIC CYCLES, MODULAR FORMS AND EULER SYSTEMS TOM WESTON

Add to Reading List

Source URL: www.math.umass.edu

Download Document from Source Website

File Size: 426,42 KB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Sheaf theory / Topos theory / Algebraic geometry / Homological algebra / Algebraic topology / Topos / Sheaf / Classifying topos / tale morphism

313 Documenta Math. ´ On the Weil-Etale

DocID: 1qoxY - View Document

Invariant theory / Algebra / Moduli space / Dual abelian variety / Étale morphism / Analytic number theory / Algebraic groups / Abstract algebra / Algebraic geometry / Moduli theory

825 Documenta Math. The Global Structure of Moduli Spaces of Polarized p-Divisible Groups

DocID: 19YgC - View Document

Group theory / Mathematical structures / Linear algebra / Homological algebra / Étale cohomology / Étale morphism / Group action / Vector space / Metric space / Algebra / Abstract algebra / Mathematics

On Gabber’s uniformization theorems : outline and applications to ´ etale cohomology [G] Luc Illusie Of ramification and vanishing cycles, Tokyo, Sep. 11, 2007 preliminary notes (Sep. 19, Finiteness and unifo

DocID: 19GOC - View Document

Algebraic geometry / Scheme theory / Group theory / Projective geometry / Category theory / Flat morphism / Étale morphism / Principal homogeneous space / Finite morphism / Abstract algebra / Geometry / Algebra

ALMOST PROPER GIT-STACKS AND DISCRIMINANT AVOIDANCE JASON STARR AND JOHAN DE JONG 1. Introduction Consider an algebraic stacks of the form [Spec(k)/G] where G is a geometrically

DocID: 19BG5 - View Document

Sheaf theory / Scheme theory / Algebraic topology / Sheaf / Étale morphism / Proj construction / Algebraic space / Lemmas / Ideal sheaf / Abstract algebra / Algebraic geometry / Algebra

L For n=1,...,m where Lm• = 0, hence we can find a closed subset H in H and any sets F on X, U is a closed immersion of S, then U → T is a separated algebraic space. Proof. Proof of (1). It also start we get S = Spec

DocID: 197RI - View Document