<--- Back to Details
First PageDocument Content
Differential geometry of surfaces / Surfaces / Curvature / Darboux frame / Trigonometric functions / Polar coordinate system / Principal curvature / Parametric surface / Gaussian curvature / Geometry / Mathematical analysis / Differential geometry
Date: 2010-07-01 19:06:13
Differential geometry of surfaces
Surfaces
Curvature
Darboux frame
Trigonometric functions
Polar coordinate system
Principal curvature
Parametric surface
Gaussian curvature
Geometry
Mathematical analysis
Differential geometry

An intuitive explanation of third-order surface behavior

Add to Reading List

Source URL: www.cs.berkeley.edu

Download Document from Source Website

File Size: 1,08 MB

Share Document on Facebook

Similar Documents

Differential geometry of surfaces / Mathematical analysis / Differential geometry / Geometry / Surfaces / Curvature / Bernhard Riemann / Integral / Moving frame / Umbilical point / Riemann surface / GaussCodazzi equations

313 Doc. Math. J. DMV Remarks on the Darboux Transform of Isothermic Surfaces

DocID: 1rfAp - View Document

Differential geometry / Mathematical analysis / Mathematics / Geometry / Integrability conditions for differential systems / lie Cartan / Differential geometry of surfaces / MaurerCartan form / Differential equation / Darboux frame / Moving frame / Projective geometry

Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems Thomas A. Ivey and J.M. Landsberg Contents

DocID: 1r8Uz - View Document

Coordinate systems / Polar coordinate system / Darboux frame / Trigonometric functions / Mathematical analysis / Geometry / Differential geometry

The Principal Curvatures On a Surface E. L. Lady notation: α(t) is a curve on a surface S. 0

DocID: 18MQI - View Document

Differential geometry of surfaces / Curvature / Group theory / Linear algebra / Vector space / Darboux frame / Linear temporal logic / Algebra / Mathematics / Differential geometry

surfaces of revolution E. L. Lady Start with a curve given parametriclly in the xz -plane, viz. β(v) = (x(v), 0, z(v)) = (ϕ(v), 0, ψ(v)). Revolving this curve around the z -axis yields a surface which we can describe

DocID: 17Bu6 - View Document

Surfaces / Curvature / Differential topology / Gaussian curvature / Darboux frame / Geodesic / Sphere / First fundamental form / Parametric surface / Geometry / Differential geometry / Mathematical analysis

The Isophotic Metric and its Application to Feature Sensitive Morphology on Surfaces Helmut Pottmann1 , Tibor Steiner1 , Michael Hofer1 , Christoph Haider2 , and Allan Hanbury3 1

DocID: 10Wl0 - View Document