<--- Back to Details
First PageDocument Content
Joseph Fourier / Generalized functions / Integral transforms / Fourier series / Convolution / Dirac delta function / Sinc function / Fourier transform / Dirac comb / Mathematical analysis / Fourier analysis / Signal processing
Date: 2008-10-17 05:02:12
Joseph Fourier
Generalized functions
Integral transforms
Fourier series
Convolution
Dirac delta function
Sinc function
Fourier transform
Dirac comb
Mathematical analysis
Fourier analysis
Signal processing

Add to Reading List

Source URL: media.wiley.com

Download Document from Source Website

File Size: 476,02 KB

Share Document on Facebook

Similar Documents

1 Algorithm 3 Filter [2 points] What do we usually use to approximate the sinc function, and why do we make this approximation when translating these theoretical concepts into code?

DocID: 1sooy - View Document

Mathematics / Geometry / Algebra / Lattice points / Analytic geometry / Lattice / Finite element method / Partial differential equation / Sinc function / Interpolation / Leech lattice / Lattice QCD

Smooth Pycnophylactic Interpolation for Geographical Regions1 Waldo R. Tobler2 ABSTRACT: Census enumerations are usually packaged in irregularly shaped geographical regions. Interior values can be interpolated for such r

DocID: 1pMbu - View Document

Cognitive science / Experimental psychology / Neuropsychological assessment / Perception / Recall / Sinc function

Phonological similarity -- 1 Running Head: Phonological similarity Linguistic Labels: Conceptual Markers or Object Features? Vladimir M. Sloutsky

DocID: 1pdQ2 - View Document

Interpolation / Signal processing / HilbertHuang transform / Spline / Cubic Hermite spline / Smoothing spline / Envelope / Sinc function / Fourier transform

March 9, 2012 9:59 WSPCAADAAdvances in Adaptive Data Analysis Vol. 3, No–540

DocID: 1oPkm - View Document

Signal processing / Sinc function

Mersey Burns Developing an App From Idea to Awards Success With No Funding Mobile Healthcare Industry Summit, 25 Sep 2012 Chris Seaton

DocID: 1lWLu - View Document