<--- Back to Details
First PageDocument Content
Golden ratio / Elementary geometry / Irrational numbers / Mathematical constants / Packing problem / Geometry / Quadrilaterals / Rectangle
Date: 2010-08-19 04:23:42
Golden ratio
Elementary geometry
Irrational numbers
Mathematical constants
Packing problem
Geometry
Quadrilaterals
Rectangle

crc227_0[removed]ctc.ps

Add to Reading List

Source URL: hydra.nat.uni-magdeburg.de

Download Document from Source Website

File Size: 35,10 KB

Share Document on Facebook

Similar Documents

393 Documenta Math. On Packing Spheres into Containers About Kepler’s Finite Sphere Packing Problem

DocID: 1sL2Z - View Document

An Ant Colony Optimisation Algorithm for the Set Packing Problem Xavier GANDIBLEUX1,2 , Xavier DELORME2 and Vincent T’KINDT3 (1) LINA - Laboratoire d’Informatique de Nantes Atlantique Universite de Nantes 2 rue de la

DocID: 1sGNm - View Document

The sphere packing problem in dimension 8 Maryna S. Viazovska arXiv:1603.04246v1 [math.NT] 14 Mar 2016

DocID: 1sa5K - View Document

MIC2005: The Sixth Metaheuristics International Conference ??-1 An ant colony optimization inspired algorithm for the Set Packing Problem with application to railway infrastructure

DocID: 1rBph - View Document

International Journal on Computational Science & Applications (IJCSA) Vol.5,No.6, DecemberBIN PACKING PROBLEM: A LINEAR CONSTANT SPACE -APPROXIMATION ALGORITHM 

DocID: 1rwBs - View Document