<--- Back to Details
First PageDocument Content
Differential operators / Dynamical systems / Harmonic analysis / Microlocal analysis / Differential equation / Hyperbolic partial differential equation / Elliptic operator / Nonlinear system / Pseudo-differential operator / Mathematical analysis / Calculus / Partial differential equations
Date: 2012-06-12 18:16:02
Differential operators
Dynamical systems
Harmonic analysis
Microlocal analysis
Differential equation
Hyperbolic partial differential equation
Elliptic operator
Nonlinear system
Pseudo-differential operator
Mathematical analysis
Calculus
Partial differential equations

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 35, Number 2, April 1998, Pages 175–177

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 79,00 KB

Share Document on Facebook

Similar Documents

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

DocID: 1xUKG - View Document

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

DocID: 1vbJA - View Document

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

DocID: 1vb7j - View Document

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy  y ( y

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy y ( y

DocID: 1v5d6 - View Document

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

DocID: 1v4OQ - View Document