<--- Back to Details
First PageDocument Content
Systems theory / Mathematical analysis / Structure / Systems / Chaos theory / Period-doubling bifurcation / Homoclinic orbit / Hénon map / Fermi–Ulam model / Dynamical systems / Bifurcation theory / Non-linear systems
Date: 2013-08-30 10:17:40
Systems theory
Mathematical analysis
Structure
Systems
Chaos theory
Period-doubling bifurcation
Homoclinic orbit
Hénon map
Fermi–Ulam model
Dynamical systems
Bifurcation theory
Non-linear systems

P2: ABC JWST250-Luo October 26, [removed]:43

Add to Reading List

Source URL: media.wiley.com

Download Document from Source Website

File Size: 160,56 KB

Share Document on Facebook

Similar Documents

Bifurcation theory / Mathematical analysis / Mathematics / Systems science / Homoclinic bifurcation / Homoclinic orbit / Attractor / Bifurcation diagram / Dynamical system / Saddle point / Normal form / Limit set

IOP PUBLISHING NONLINEARITY Nonlinearity–1298

DocID: 1qBHt - View Document

Dynamical systems / Lyapunov exponent / Lagrangian coherent structure / Chaos theory / Attractor / Ergodic theory / Homoclinic orbit / Stability theory / Heteroclinic orbit / Invariant manifold

SPECIAL SESSIONSpecial Session 10: Computational and Nonautonomous Dynamics Michael Dellnitz, University of Paderborn, Germany

DocID: 1pkcH - View Document

Dynamical systems / Orbits / Bifurcation theory / Homoclinic orbit / Elliptic orbit / Rotation number / Magnetic reconnection / Hyperbolic trajectory

CHAOS 15, 023108 共2005兲 Meanders and reconnection–collision sequences in the standard nontwist map A. Wurm, A. Apte, K. Fuchss, and P. J. Morrison Department of Physics and Institute for Fusion Studies, The Univer

DocID: 1mvlQ - View Document

Bifurcation theory / Welfare economics / Economic ideologies / J. Barkley Rosser /  Jr. / Chaotic hysteresis / Transition economy / Planned economy / Homoclinic orbit / Economic growth / Economies / Economics / Economic systems

DOC Document

DocID: 1agSF - View Document

Intermittency / Non-linear systems / Reaction–diffusion system / Homoclinic orbit / Homoclinic bifurcation / Systems theory / Pattern formation / Berlin Institute of Technology / Mathematics / Dynamical systems / Bifurcation theory / Mathematical analysis

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Humboldt-Universität zu Berlin, Max-Delbrück-Centrum für Molekulare Medizin, Otto-von-Guericke-Universität Magdeburg, Physikalisch-Technische Bundesanstalt, Technisch

DocID: 19VUm - View Document