<--- Back to Details
First PageDocument Content
Horseshoe map / Homoclinic orbit / Structural stability / Ergodic theory / Markov partition / Chaos theory / Invariant measure / Stable manifold / Hyperbolic set / Dynamical systems / Mathematical analysis / Mathematics
Date: 2005-03-29 15:51:13
Horseshoe map
Homoclinic orbit
Structural stability
Ergodic theory
Markov partition
Chaos theory
Invariant measure
Stable manifold
Hyperbolic set
Dynamical systems
Mathematical analysis
Mathematics

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 111,17 KB

Share Document on Facebook

Similar Documents

Bifurcation theory / Mathematical analysis / Mathematics / Systems science / Homoclinic bifurcation / Homoclinic orbit / Attractor / Bifurcation diagram / Dynamical system / Saddle point / Normal form / Limit set

IOP PUBLISHING NONLINEARITY Nonlinearity–1298

DocID: 1qBHt - View Document

Dynamical systems / Lyapunov exponent / Lagrangian coherent structure / Chaos theory / Attractor / Ergodic theory / Homoclinic orbit / Stability theory / Heteroclinic orbit / Invariant manifold

SPECIAL SESSIONSpecial Session 10: Computational and Nonautonomous Dynamics Michael Dellnitz, University of Paderborn, Germany

DocID: 1pkcH - View Document

Dynamical systems / Orbits / Bifurcation theory / Homoclinic orbit / Elliptic orbit / Rotation number / Magnetic reconnection / Hyperbolic trajectory

CHAOS 15, 023108 共2005兲 Meanders and reconnection–collision sequences in the standard nontwist map A. Wurm, A. Apte, K. Fuchss, and P. J. Morrison Department of Physics and Institute for Fusion Studies, The Univer

DocID: 1mvlQ - View Document

Bifurcation theory / Welfare economics / Economic ideologies / J. Barkley Rosser /  Jr. / Chaotic hysteresis / Transition economy / Planned economy / Homoclinic orbit / Economic growth / Economies / Economics / Economic systems

DOC Document

DocID: 1agSF - View Document

Intermittency / Non-linear systems / Reaction–diffusion system / Homoclinic orbit / Homoclinic bifurcation / Systems theory / Pattern formation / Berlin Institute of Technology / Mathematics / Dynamical systems / Bifurcation theory / Mathematical analysis

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Humboldt-Universität zu Berlin, Max-Delbrück-Centrum für Molekulare Medizin, Otto-von-Guericke-Universität Magdeburg, Physikalisch-Technische Bundesanstalt, Technisch

DocID: 19VUm - View Document