<--- Back to Details
First PageDocument Content
Hyperboloid / Minkowski space / Duality / Geometric algebra / Point at infinity / Projective geometry / Horoball / Beltrami–Klein model / Conformal geometric algebra / Geometry / Hyperbolic geometry / Hyperbolic space
Date: 1999-04-13 14:25:24
Hyperboloid
Minkowski space
Duality
Geometric algebra
Point at infinity
Projective geometry
Horoball
Beltrami–Klein model
Conformal geometric algebra
Geometry
Hyperbolic geometry
Hyperbolic space

Add to Reading List

Source URL: geocalc.clas.asu.edu

Download Document from Source Website

File Size: 379,86 KB

Share Document on Facebook

Similar Documents

Horoball Hulls and Extents in Positive Definite Space? P. Thomas Fletcher, John Moeller, Jeff M. Phillips, and Suresh Venkatasubramanian University of Utah Abstract. The space of positive definite matrices P(n) is a Riem

DocID: 1d70V - View Document

Differential geometry / Riemannian manifolds / Geometric topology / Mostow rigidity theorem / Hyperbolic manifold / Hyperbolic space / Volume entropy / Sectional curvature / Horoball / Geometry / Hyperbolic geometry / 3-manifolds

Department of Mathematics and Statistics The Univeristy of Melbourne Mostow’s Rigidity Theorem James Saunderson

DocID: 18jhx - View Document

Hyperboloid / Minkowski space / Duality / Geometric algebra / Point at infinity / Projective geometry / Horoball / Beltrami–Klein model / Conformal geometric algebra / Geometry / Hyperbolic geometry / Hyperbolic space

PDF Document

DocID: 15XL - View Document

Hyperboloid / Minkowski space / Duality / Geometric algebra / Horoball / Beltrami–Klein model / Conformal geometric algebra / Geometry / Hyperbolic geometry / Hyperbolic space

PDF Document

DocID: wG2 - View Document