<--- Back to Details
First PageDocument Content
Dirichlet process / Mixture model / Prior probability / Bayesian inference / Hyperparameter / Expectation–maximization algorithm / Constructible universe / Hyperprior / Hidden Markov model / Statistics / Bayesian statistics / Conjugate prior
Date: 2001-04-23 08:50:39
Dirichlet process
Mixture model
Prior probability
Bayesian inference
Hyperparameter
Expectation–maximization algorithm
Constructible universe
Hyperprior
Hidden Markov model
Statistics
Bayesian statistics
Conjugate prior

Add to Reading List

Source URL: www.gatsby.ucl.ac.uk

Download Document from Source Website

File Size: 146,63 KB

Share Document on Facebook

Similar Documents

Observational astronomy / Astronomy / Parallel computing / Bayesian network / Sloan Digital Sky Survey / Computing / Bayesian inference / Astronomical survey / Gravitational lens / Computer cluster

Cataloging the Visible Universe through Bayesian Inference at Petascale Jeffrey Regier∗ , Kiran Pamnany† , Keno Fischer‡ , Andreas Noack§ , Maximilian Lam∗ , Jarrett Revels§ , Steve Howard¶ , Ryan Giordano¶ ,

DocID: 1xVn9 - View Document

Humancomputer interaction / Artificial intelligence / Robot control / Virtual reality / Multimodal interaction / Video game controllers / Robot navigation / Haptic technology / Haptic perception / Simultaneous localization and mapping / Occupancy grid mapping / Kalman filter

Haptic SLAM: an ideal observer model for Bayesian inference of object shape and hand pose from contact dynamics Feryal M. P. Behbahani1 , Guillem Singla–Buxarrais2 and A. Aldo Faisal1,2,3 1

DocID: 1xTqR - View Document

Improving the Identifiability of Neural Networks for Bayesian Inference Arya A. Pourzanjani∗, Richard M. Jiang∗, Linda R. Petzold Department of Computer Science University of California, Santa Barbara

DocID: 1uZys - View Document

MAP estimate on GLMs Stochastic Gradient Descent (SGD) MAP to Bayesian Inference

DocID: 1uTAz - View Document

Bayesian Analysis, Number 4, pp. 817–846 Inference of global clusters from locally distributed data

DocID: 1uGu0 - View Document