Jaakkola

Results: 79



#Item
31Statistical theory / M-estimators / Expectation–maximization algorithm / Missing data / Maximum likelihood / Mixture model / Conjugate prior / Likelihood function / Normal distribution / Statistics / Estimation theory / Bayesian statistics

6.867 Machine learning, lecture 16 (Jaakkola) 1 Lecture topics: • Mixture of Gaussians (cont’d)

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
32Operator theory / Normal distribution / Vector space / Algebra / Mathematics / Vectors

6.867 Machine learning, lecture 7 (Jaakkola) 1 Lecture topics: • Kernel form of linear regression

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
33Bayesian statistics / Econometrics / Bayesian inference / Maximum likelihood / Loss function / Likelihood function / Marginal likelihood / Normal distribution / Bayesian information criterion / Statistics / Estimation theory / Statistical theory

6.867 Machine learning, lecture 10 (Jaakkola) 1 Lecture topics: model selection criteria • Structural risk minimization, example derivation

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
34Statistical classification / Machine learning / Support vector machine / Kernel / Regularization / Statistics / Algebra / Mathematics

6.867 Machine learning, lecture 9 (Jaakkola) 1 Lecture topics: • Kernel optimization

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
35AdaBoost / Boosting / Perceptron / Computer programming / Ensemble learning / Learning / Statistics

6.867 Machine learning, lecture 13 (Jaakkola) 1 Lecture topics: • Boosting, margin, and gradient descent

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
36Dimension / Linear algebra / Statistical classification / Computational learning theory / Mixture model / VC dimension / Kernel / Mixture distribution / Perceptron / Algebra / Mathematics / Statistics

6.867 Machine learning, lecture 14 (Jaakkola) 1 Lecture topics: • margin and generalization

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
37Estimation theory / Statistical theory / Information theory / Naive Bayes classifier / Mutual information / Likelihood function / Loss function / Statistics / Bayesian statistics / Statistical classification

6.867 Machine learning, lecture 12 (Jaakkola) 1 Lecture topics: model selection criteria • Feature subset selection (cont’d)

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
38Statistical theory / Perceptron / Loss function / Function / Statistics / Mathematics / Neural networks

6.867 Machine learning, lecture 1 (Jaakkola) 1 Example Let’s start with an example. Suppose we are charged with providing automated access

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
39Support vector machine / Vector space / Lagrange multiplier / Algebra / Mathematics / Statistical classification

6.867 Machine learning, lecture 8 (Jaakkola) 1 Lecture topics: • Support vector machine and kernels

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
40Statistical theory / M-estimators / Bayesian statistics / Information / Maximum likelihood / Mutual information / Likelihood function / Minimum description length / Conditional entropy / Estimation theory / Information theory / Statistics

6.867 Machine learning, lecture 11 (Jaakkola) 1 Lecture topics: model selection criteria • Minimum description length (MDL)

Add to Reading List

Source URL: ocw.mit.edu

Language: English - Date: 2015-03-15 16:36:56
UPDATE