K-server problem

Results: 14



#Item
11

UM Mathletics[removed]Problem Set #3 K. Kopotun 1. Prove that there exists a positive integer n such that for every x ≥ 0 the inequality (x − 1)(x2005 − 2005xn+1 + 2005xn − 1) ≥ 0

Add to Reading List

Source URL: server.math.umanitoba.ca

- Date: 2010-12-03 12:07:43
    12

    UM Mathletics[removed]Problem Set #5 K. Kopotun 1. Is it possible that both numbers 2n − 1 and 2n + 1 are prime for some n > 2? 2. Prove that the sum 1k + 2k + · · · + nk ,

    Add to Reading List

    Source URL: server.math.umanitoba.ca

    - Date: 2010-12-03 12:07:44
      13Computer science / Applied mathematics / Adversary model / Competitive analysis / K-server problem / Randomized algorithm / Algorithm / List update problem / Online algorithms / Analysis of algorithms / Theoretical computer science

      PDF Document

      Add to Reading List

      Source URL: www.math.ias.edu

      Language: English - Date: 2002-04-25 16:20:25
      14Computer science / Applied mathematics / K-server problem / Randomized algorithm / Metrical task system / SL / Competitive analysis / Adversary model / David Shmoys / Online algorithms / Theoretical computer science / Analysis of algorithms

      PDF Document

      Add to Reading List

      Source URL: people.csail.mit.edu

      Language: English - Date: 2011-10-07 12:47:37
      UPDATE