<--- Back to Details
First PageDocument Content
Field theory / Galois theory / Algebraic number theory / Field extension / Galois group / Splitting field / Galois extension / Field / Polynomial / Conjugate element / Field trace
Date: 2006-03-03 04:47:19
Field theory
Galois theory
Algebraic number theory
Field extension
Galois group
Splitting field
Galois extension
Field
Polynomial
Conjugate element
Field trace

ALGORITHMIC GALOIS THEORY Hendrik W. Lenstra jr. Mathematisch Instituut, Universiteit Leiden

Add to Reading List

Source URL: www.math.leidenuniv.nl

Download Document from Source Website

File Size: 63,47 KB

Share Document on Facebook

Similar Documents

Mathematics / Integer sequences / Field theory / Number theory / Constructible universe / Elliptic divisibility sequence / Sequence / Splitting field / Divisibility sequence

711 Documenta Math. Divisibility Sequences and Powers of Algebraic Integers

DocID: 1rbnC - View Document

Field theory / Finite field / Polynomials / Splitting field

On the iterations of certain maps x k (x+x-1) over finite fields of odd characteristic

DocID: 1r1Ku - View Document

Algebra / Abstract algebra / Mathematics / Finite groups / Galois theory / Permutation groups / Field theory / Galois group / Splitting field / Permutation / Symmetric group / Sylow theorems

A Polynomial Time Nilpotence Test for Galois Groups and Related Results V. Arvind1 and Piyush P Kurur2 1 2

DocID: 1qQfn - View Document

Mathematics / Algebra / Logarithms / Polynomial / Index calculus algorithm / Abstract algebra / Computer algebra

On the Function Field Sieve and the Impact of Higher Splitting Probabilities Robert Granger Joint work with Faruk Gölo§lu, Gary McGuire and Jens Zumbrägel

DocID: 1qJsF - View Document

Mathematics / Algebra / Polynomials / Mathematical analysis / Splitting field / Finite field / Irreducible polynomial / Factorization / Elliptic curve / Algebraic function / Discriminant / Resolvent cubic

On Hashing into Elliptic Curves Reza Rezaeian Farashahi Department of Computing, Macquarie University Sydney, NSW 2109, Australia Igor E. Shparlinski

DocID: 1qHDe - View Document