<--- Back to Details
First PageDocument Content
Logic / Abstraction / Philosophy / Arguments / Critical thinking / Philosophy of language / Logical truth / Semantics / First-order logic / Logical form / Propositional calculus / Meaning
Date: 2014-10-16 03:42:21
Logic
Abstraction
Philosophy
Arguments
Critical thinking
Philosophy of language
Logical truth
Semantics
First-order logic
Logical form
Propositional calculus
Meaning

Reconstructing Arguments: Formalization and Reflective Equilibrium

Add to Reading List

Source URL: www.georgbrun.ch

Download Document from Source Website

File Size: 168,31 KB

Share Document on Facebook

Similar Documents

Algebra / Mathematics / Multilinear algebra / Non-interactive zero-knowledge proof / Proof theory / IP / Snark / Zero-knowledge proof / Zero knowledge / Soundness / Bilinear map / Model theory

On the Size of Pairing-based Non-interactive Arguments? Jens Groth?? University College London, UK Abstract. Non-interactive arguments enable a prover to convince a verifier that a statement is true. R

DocID: 1xVKy - View Document

Randomized algorithms / Probabilistically checkable proof / Mathematics / IP / Cryptography / Creativity / NP / Soundness / Proof of secure erasure / Cryptographic protocol / Interactive proof system

COSC 544 Probabilistic Proof SystemsLinear PCPs and Succinct Arguments Lecturer: Justin Thaler

DocID: 1xVEj - View Document

Software engineering / Computer programming / Computing / Programming languages / Object-oriented programming languages / Functional programming / Procedural programming languages / Subroutines / Scheme / Parameter / Lisp / Anonymous function

Keyword and Optional Arguments in PLT Scheme Matthew Flatt Eli Barzilay University of Utah and PLT

DocID: 1xVfP - View Document

Ligero: Lightweight Sublinear Arguments Without a Trusted Setup

DocID: 1xUHB - View Document

Cryptography / Computational complexity theory / Complexity classes / Randomized algorithms / Zero-knowledge proof / Analysis of algorithms / NP / Commitment scheme / Probabilistically checkable proof / IP / Logarithm / XTR

Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting†∗ Jonathan Bootle1 , Andrea Cerulli1 , Pyrros Chaidos1∗∗ , Jens Groth1 , and Christophe Petit2 1

DocID: 1xUBS - View Document