<--- Back to Details
First PageDocument Content
Stochastic processes / Mathematics / M/G/1 queue / Queueing model / Eigenvalues and eigenvectors / Differential equation / Spectral theory of ordinary differential equations / Itō diffusion / Statistics / Algebra / Queueing theory
Date: 2009-08-13 14:16:22
Stochastic processes
Mathematics
M/G/1 queue
Queueing model
Eigenvalues and eigenvectors
Differential equation
Spectral theory of ordinary differential equations
Itō diffusion
Statistics
Algebra
Queueing theory

M/G/1 Queues with workload-based balking Liqiang Liu and Vidyadhar G. Kulkarni Department of Statistics and Operations Research University of North Carolina Chapel Hill, N.CAbstract

Add to Reading List

Source URL: stat-or.unc.edu

Download Document from Source Website

File Size: 604,75 KB

Share Document on Facebook

Similar Documents

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

DocID: 1xUKG - View Document

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

DocID: 1vbJA - View Document

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

DocID: 1vb7j - View Document

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy  y ( y

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy y ( y

DocID: 1v5d6 - View Document

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

DocID: 1v4OQ - View Document