<--- Back to Details
First PageDocument Content
Markov processes / Markov chain / Ornstein–Uhlenbeck process / Kernel density estimation / Stochastic matrix / Simulation / Hidden Markov model / Statistics / Markov models / Stochastic processes
Date: 2012-02-29 03:37:58
Markov processes
Markov chain
Ornstein–Uhlenbeck process
Kernel density estimation
Stochastic matrix
Simulation
Hidden Markov model
Statistics
Markov models
Stochastic processes

Modelling vertical fish migration using mixed Ornstein-Uhlenbeck processes Erik Natvig∗, Sam Subbey† Abstract Based on vertical movement data derived from electronic storage tags (DST) attached to fish, we construct

Add to Reading List

Source URL: www.nik.no

Download Document from Source Website

File Size: 403,81 KB

Share Document on Facebook

Similar Documents

Process algebra and Markov processes The nature of synchronisation Equivalence relations Case study: active badges Summary  From Markov to Milner and back: Stochastic process algebras Jane Hillston School of Informatics

Process algebra and Markov processes The nature of synchronisation Equivalence relations Case study: active badges Summary From Markov to Milner and back: Stochastic process algebras Jane Hillston School of Informatics

DocID: 1xVg5 - View Document

Gaussian Stochastic ProcessesGaussian Stochastic Processes • Linear systems driven by IID noise • Evolution of mean and covariance • Example: mass-spring system

Gaussian Stochastic ProcessesGaussian Stochastic Processes • Linear systems driven by IID noise • Evolution of mean and covariance • Example: mass-spring system

DocID: 1uqvO - View Document

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS MSRI Summer Graduate School July 7–18, A. A. Borovkov, Ergodicity and stability of stochastic processes, Wiley, Chichester, 1998, ISBNMRZbl 0

STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS MSRI Summer Graduate School July 7–18, A. A. Borovkov, Ergodicity and stability of stochastic processes, Wiley, Chichester, 1998, ISBNMRZbl 0

DocID: 1sRlG - View Document

Embedding machine learning in formal stochastic models of biological processes Jane Hillston School of Informatics, University of Edinburgh  29th October 2014

Embedding machine learning in formal stochastic models of biological processes Jane Hillston School of Informatics, University of Edinburgh 29th October 2014

DocID: 1sHGv - View Document

Stochastic Processes and their Applications–53  Self-collisions of superprocesses: renormalization and limit theorems Jay Rosen 1 Department of Mathematics, College of Staten Island, CUNY Staten Island, NY

Stochastic Processes and their Applications–53 Self-collisions of superprocesses: renormalization and limit theorems Jay Rosen 1 Department of Mathematics, College of Staten Island, CUNY Staten Island, NY

DocID: 1sGka - View Document