<--- Back to Details
First PageDocument Content
Algebra / Abstract algebra / Mathematics / Number theory / Non-associative algebra / GrothendieckTeichmller group / Associator / Universal property / Torsor / Quantum group / Unipotent / Representation theory
Date: 2016-05-02 09:25:10
Algebra
Abstract algebra
Mathematics
Number theory
Non-associative algebra
GrothendieckTeichmller group
Associator
Universal property
Torsor
Quantum group
Unipotent
Representation theory

The Grothendieck-Teichmüller Group Thomas Willwacher February 27, 2014 2

Add to Reading List

Source URL: people.math.ethz.ch

Download Document from Source Website

File Size: 782,97 KB

Share Document on Facebook

Similar Documents

PROCEEDINGS OF THE ROMAN NUMBER THEORY ASSOCIATION Volume 2, Number 1, March 2017, pages 1-12 Michel Waldschmidt

DocID: 1vpOA - View Document

SOME EXAMPLES IN THE THEORY OF SUBGROUP GROWTH ¨ ller and Jan-Christoph Schlage-Puchta Thomas W. Mu Abstract. By estimating the subgroup numbers associated with various classes of large groups, we exhibit a number of n

DocID: 1vpks - View Document

CLASS FIELD THEORY P. Stevenhagen Explicit Algebraic Number Theory Oberwolfach Seminar November 2002

DocID: 1voYb - View Document

————————————————————————————– Vilnius Conference in Combinatorics and Number Theory Vilnius, Lithuania, July 16 - July 22, 2017 Program and Abstract Book

DocID: 1volf - View Document

Advanced algebraic number theory Advanced algebraic number theory A. Page IMB INRIA/Université de Bordeaux

DocID: 1vmt5 - View Document