<--- Back to Details
First PageDocument Content
Mathematics / Computational complexity theory / Graph theory / Graphical models / Combinatorial optimization / Convex optimization / Operations research / Probability theory / Polynomial / Ellipsoid method / Markov random field / Bayesian network
Date: 2013-11-08 17:46:03
Mathematics
Computational complexity theory
Graph theory
Graphical models
Combinatorial optimization
Convex optimization
Operations research
Probability theory
Polynomial
Ellipsoid method
Markov random field
Bayesian network

Marginals-to-Models Reducibility Michael Kearns University of Pennsylvania

Add to Reading List

Source URL: theory.stanford.edu

Download Document from Source Website

File Size: 344,59 KB

Share Document on Facebook

Similar Documents

Constraints DOIs10601y Graphical models for optimal power flow Krishnamurthy Dvijotham1 · Michael Chertkov2 · Pascal Van Hentenryck3 · Marc Vuffray2 ·

DocID: 1vlyo - View Document

IFT 6269: Probabilistic Graphical Models Fall 2017 Lecture 3 — September 12 Lecturer: Simon Lacoste-Julien

DocID: 1vkUj - View Document

OR/STAT 719 – CSI 775 Graphical Probability Models for Inference and Decision Making Prof. Paulo C. G. Costa, PhD Department of Systems Engineering and Operations Research George Mason University

DocID: 1uNvh - View Document

Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models Baback Moghaddam1, Benjamin M. Marlin2, Mohammad Emtiyaz Khan2 and Kevin P. Murphy2 1. Jet Propulsion Laboratory, California Insti

DocID: 1urTH - View Document