<--- Back to Details
First PageDocument Content
Machine learning / Learning / Artificial intelligence / Artificial neural networks / Computational neuroscience / Autoencoder / Unsupervised learning / Adversarial machine learning / Statistical classification / Deep learning / Classifier / Softmax function
Date: 2017-12-30 21:51:58
Machine learning
Learning
Artificial intelligence
Artificial neural networks
Computational neuroscience
Autoencoder
Unsupervised learning
Adversarial machine learning
Statistical classification
Deep learning
Classifier
Softmax function

MagNet: a Two-Pronged Defense against Adversarial Examples

Add to Reading List

Source URL: acmccs.github.io

Download Document from Source Website

File Size: 1,54 MB

Share Document on Facebook

Similar Documents

Syntax-Directed Variational Autoencoder for Molecule Generation Hanjun Dai1* , Yingtao Tian2* , Bo Dai1 , Steven Skiena2 , Le Song1 1 College of Computing, Georgia Institute of Technology 2

DocID: 1vlR1 - View Document

Semi-Supervised Recursive Autoencoder Si Chen and Yufei Wang Department of Electrical and Computer Engineering University of California San Diego {sic046, yuw176}@ucsd.edu

DocID: 1v727 - View Document

An Autoencoder Approach to Learning Bilingual Word Representations Sarath Chandar A P1 ∗ , Stanislas Lauly2 ∗ , Hugo Larochelle2 , Mitesh M Khapra3 , Balaraman Ravindran1 , Vikas Raykar3 , Amrita Saha3 1

DocID: 1v23p - View Document

On Nonparametric Guidance for Learning Autoencoder Representations Jasper Snoek University of Toronto

DocID: 1uwmD - View Document

arXiv:1610.00291v1 [cs.CV] 2 OctDeep Feature Consistent Variational Autoencoder Xianxu Hou University of Nottingham, Ningbo China

DocID: 1tDNC - View Document