<--- Back to Details
First PageDocument Content
Mathematical analysis / Mathematics / Calculus / Partial differential equations / Fourier analysis / Lipschitz maps / Harmonic functions / MongeAmpre equation / Differential equation / Elliptic curve / Ordinary differential equation / Dirichlet problem
Date: 2006-04-26 00:31:00
Mathematical analysis
Mathematics
Calculus
Partial differential equations
Fourier analysis
Lipschitz maps
Harmonic functions
MongeAmpre equation
Differential equation
Elliptic curve
Ordinary differential equation
Dirichlet problem

SCHAUDER ESTIMATES FOR ELLIPTIC AND PARABOLIC EQUATIONS Xu-Jia Wang The Australian National University Introduction

Add to Reading List

Source URL: maths-people.anu.edu.au

Download Document from Source Website

File Size: 160,50 KB

Share Document on Facebook

Similar Documents

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

DocID: 1xUKG - View Document

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

DocID: 1vbJA - View Document

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

DocID: 1vb7j - View Document

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy  y ( y

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy y ( y

DocID: 1v5d6 - View Document

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

DocID: 1v4OQ - View Document