<--- Back to Details
First PageDocument Content
Cluster analysis / Multivariate statistics / K-means clustering / Outlier / Random forest / Anomaly detection / Medoid / K-medoids / Principal component analysis / Statistics / Data analysis / Data mining
Date: 2013-04-26 09:13:28
Cluster analysis
Multivariate statistics
K-means clustering
Outlier
Random forest
Anomaly detection
Medoid
K-medoids
Principal component analysis
Statistics
Data analysis
Data mining

Add to Reading List

Source URL: star-www.st-andrews.ac.uk

Download Document from Source Website

File Size: 2,17 MB

Share Document on Facebook

Similar Documents

Principal Component Analysis on non-Gaussian Dependent Data Fang Han Johns Hopkins University, 615 N.Wolfe Street, Baltimore, MDUSA Han Liu Princeton University, 98 Charlton Street, Princeton, NJUSA

DocID: 1vdC9 - View Document

Generalized Principal Component Analysis (GPCA)∗ Ren´e Vidal† Yi Ma‡ Shankar Sastry† † Department of EECS, University of California, Berkeley, CA 94720

DocID: 1uYRE - View Document

A. Krisciukaitis et al.: Efficiency Evaluation of Autonomic Heart Control by Using the Principal Component Analysis of ECG P-Wave, en 9 en9 Efficiency Evaluation of Autonomic Heart Control by Using

DocID: 1tOkO - View Document

Full Regularization Path for Sparse Principal Component Analysis Alexandre d’Aspremont, Francis Bach & Laurent El Ghaoui, Princeton University, INRIA/ENS Ulm & U.C. Berkeley Support from NSF, DHS and Google.

DocID: 1tMMK - View Document

Binary Principal Component Analysis in the Netflix Collaborative Filtering Task

DocID: 1tMJC - View Document