<--- Back to Details
First PageDocument Content
Mathematical analysis / Calculus / Generalized functions / Operator theory / Distribution / Functional analysis / Heat equation / Partial differential equation / Differential forms on a Riemann surface / Wave equation
Date: 2005-08-03 16:33:05
Mathematical analysis
Calculus
Generalized functions
Operator theory
Distribution
Functional analysis
Heat equation
Partial differential equation
Differential forms on a Riemann surface
Wave equation

NUMERICAL METHODS WITH INTERFACE ESTIMATES FOR THE POROUS MEDIUM EQUATION* DAVID HOFF† and BRADLEY J. LUCIER‡ Abstract. We provide a general basis, based on the weak truncation error, for proving L∞ error bounds fo

Add to Reading List

Source URL: www.math.purdue.edu

Download Document from Source Website

File Size: 178,31 KB

Share Document on Facebook

Similar Documents

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

DocID: 1vb7j - View Document

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

DocID: 1uYik - View Document

Deep Reinforcement Learning for Partial Differential Equation Control Amir-massoud Farahmand, Saleh Nabi, Daniel N. Nikovski Abstract— This paper develops a data-driven method for control of partial differential equati

Deep Reinforcement Learning for Partial Differential Equation Control Amir-massoud Farahmand, Saleh Nabi, Daniel N. Nikovski Abstract— This paper develops a data-driven method for control of partial differential equati

DocID: 1uLR0 - View Document

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Deep Reinforcement Learning for Partial Differential Equation Control Farahmand, A.-M.; Nabi, S.; Nikovski, D.N.

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Deep Reinforcement Learning for Partial Differential Equation Control Farahmand, A.-M.; Nabi, S.; Nikovski, D.N.

DocID: 1untp - View Document

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

DocID: 1ujg3 - View Document