<--- Back to Details
First PageDocument Content
Orthogonal polynomials / Numerical analysis / Polynomials / Gaussian quadrature / Legendre polynomials / Newton–Cotes formulas / Integral / Orthogonality / Classical orthogonal polynomials / Mathematical analysis / Mathematics / Numerical integration
Date: 2013-07-09 18:22:40
Orthogonal polynomials
Numerical analysis
Polynomials
Gaussian quadrature
Legendre polynomials
Newton–Cotes formulas
Integral
Orthogonality
Classical orthogonal polynomials
Mathematical analysis
Mathematics
Numerical integration

Orthogonal Polynomials and Gaussian Quadrature

Add to Reading List

Source URL: www.johndcook.com

Download Document from Source Website

File Size: 91,04 KB

Share Document on Facebook

Similar Documents

Algebra / Mathematics / Polynomials / Computer algebra / Polynomial / General number field sieve / Resultant / Irreducible polynomial / Factorization / Polynomial greatest common divisor / Degree of a polynomial

MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000–000 SXXBETTER POLYNOMIALS FOR GNFS SHI BAI, CYRIL BOUVIER, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

DocID: 1xVRE - View Document

Mathematical analysis / Fractals / Complex dynamics / Mathematics / Dynamical systems / Metaphysics / Systems theory / Periodic point / Julia set / Orbit / Complex quadratic polynomial / Periodic points of complex quadratic mappings

An Introduction to the Dynamics of Real and Complex Quadratic Polynomials. May 30, 2011 Abstract

DocID: 1xVv1 - View Document

On Computing the Resultant of Generic Bivariate Polynomials Gilles Villard Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, FLyon, France ABSTRACT An algorithm is presented for

DocID: 1xVkU - View Document

Algebra / Mathematics / Polynomials / Abstract algebra / Polynomial / Irreducible polynomial / Factorization of polynomials / Resultant / Algebraic geometry / Factorization / Polynomial greatest common divisor / Permutation polynomial

LibPoly: A Library for Reasoning about Polynomials∗ Dejan Jovanovi´c and Bruno Dutertre SRI International Abstract LibPoly is a C library for computing with polynomials. It provides data structures to represent multiv

DocID: 1xUTX - View Document