<--- Back to Details
First PageDocument Content
Mathematics / Polynomials / Polynomial interpolation / Newton polynomial / Linear interpolation / Lagrange polynomial / Sinc function / Multivariate interpolation / X0 / Interpolation / Numerical analysis / Mathematical analysis
Date: 2012-12-27 06:37:40
Mathematics
Polynomials
Polynomial interpolation
Newton polynomial
Linear interpolation
Lagrange polynomial
Sinc function
Multivariate interpolation
X0
Interpolation
Numerical analysis
Mathematical analysis

Add to Reading List

Source URL: www.imagescience.org

Download Document from Source Website

File Size: 355,80 KB

Share Document on Facebook

Similar Documents

Automi e reti di Petri I Prova Scritta — 24 Aprile 2015 Eserciziopunti) Si consideri l’automa finito nondeterministico (AFN) G sull’alfabeto E = {a, b, c} con stato iniziale x0 , insieme di stati finali Xm

DocID: 1vmqK - View Document

The AGM-X0(N ) Algorithm David R. Kohel The AGM- X0(N ) Algorithm

DocID: 1uZCB - View Document

On the modular curve X0 (23) Ren´e Schoof Abstract. The Jacobian J0 (23) of the modular curve X0 (23) is a semi-stable abelian variety over Q with good reduction outside 23. It is simple. We prove that every simple semi

DocID: 1uEoL - View Document

Automi e reti di Petri I Prova Scritta — 20 aprile 2018 Eserciziopunti) L’automa finito non deterministico G = (X, E, ∆, x0 , Xm ) ha la seguente struttura: X = {x0 , x1 , x2 , x3 , x4 , x5 }; ∆=

DocID: 1ujhA - View Document

Automi e reti di Petri — Esercitazione 2 18 marzo 2015 Esercizio 1. È dato l’automa finito non deterministico G = (X, E, ∆, x0 , Xm ) in figura. x0

DocID: 1uboH - View Document