<--- Back to Details
First PageDocument Content
Chemical synapse / Neuron / Niemann–Pick disease / Sphingomyelin / Synaptic vesicle / Hippocampus / Biology / Neurophysiology / Neuroscience
Date: 2010-04-26 15:38:25
Chemical synapse
Neuron
Niemann–Pick disease
Sphingomyelin
Synaptic vesicle
Hippocampus
Biology
Neurophysiology
Neuroscience

NNPDF-Funded Research Grant # 36 TITLE: Organization of Synapses in Niemann-Pick Disease Type A PROJECT INVESTIGATOR: Maria D. Ledesma, Ph.D. PERIOD: [removed]2005 PROJECT DESCRIPTION

Add to Reading List

Source URL: www.nnpdf.org

Download Document from Source Website

File Size: 129,81 KB

Share Document on Facebook

Similar Documents

Proteolysis of SNARE proteins alters facilitation and depression in a specific way Samuel M. Young, Jr.* Molecular Neurobiology Laboratory and Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 1

Proteolysis of SNARE proteins alters facilitation and depression in a specific way Samuel M. Young, Jr.* Molecular Neurobiology Laboratory and Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 1

DocID: 1pFHx - View Document

Samuel M. Young, Jr. PhD Max Planck Research Group Leader Research Group Molecular Mechanisms of Synaptic Function Max Planck Florida Institute for Neuroscience One Max Planck Way Jupiter, Florida USA 33458

Samuel M. Young, Jr. PhD Max Planck Research Group Leader Research Group Molecular Mechanisms of Synaptic Function Max Planck Florida Institute for Neuroscience One Max Planck Way Jupiter, Florida USA 33458

DocID: 1peTa - View Document

Samuel M. Young, Jr. PhD Max Planck Research Group Leader Research Group Molecular Mechanisms of Synaptic Function Max Planck Florida Institute for Neuroscience One Max Planck Way Jupiter, Florida USA 33458

Samuel M. Young, Jr. PhD Max Planck Research Group Leader Research Group Molecular Mechanisms of Synaptic Function Max Planck Florida Institute for Neuroscience One Max Planck Way Jupiter, Florida USA 33458

DocID: 1oStu - View Document

Miniature endplate current rise times <100 microseconds from improved recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle

Miniature endplate current rise times <100 microseconds from improved recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle

DocID: 1ohpV - View Document

Microsoft Word - Portadilla2.docx

Microsoft Word - Portadilla2.docx

DocID: 1aRzE - View Document