<--- Back to Details
First PageDocument Content
Mathematical analysis / Functional analysis / Mathematics / C*-algebras / Noncommutative geometry / Quantum gravity / Banach algebras / Noncommutative topology / Spectral triple / Space / Noncommutative algebraic geometry / Noncommutative torus
Date: 2018-04-02 11:28:55
Mathematical analysis
Functional analysis
Mathematics
C*-algebras
Noncommutative geometry
Quantum gravity
Banach algebras
Noncommutative topology
Spectral triple
Space
Noncommutative algebraic geometry
Noncommutative torus

COLLOQUIUM Asghar Ghorbanpour Western University Geometry of Noncommutative Spaces

Add to Reading List

Source URL: www.uregina.ca

Download Document from Source Website

File Size: 107,37 KB

Share Document on Facebook

Similar Documents

COMMUNICATION A Case Study in Noncommutative Topology Claude L. Schochet Communicated by Gerald B. Folland

DocID: 1veVa - View Document

Algebra / Abstract algebra / Algebraic geometry / Scheme theory / Algebraic varieties / General topology / Zariski topology / Zariski geometry / Oscar Zariski / Noetherian topological space / ZariskiRiemann space / Generic property

Zariski structures and noncommutative geometry B. Zilber University of Oxford http://www.people.maths.ox.ac.uk/ ∼zilber: Zariki Geometries (forthcoming book); A class of quantum Zariski geometries;

DocID: 1rq8r - View Document

Algebra / Abstract algebra / Mathematics / Scheme theory / Ring theory / Algebraic varieties / Commutative algebra / Spectrum of a ring / Algebraic geometry / Noncommutative geometry / Zariski topology / Representation theory

PDF Document

DocID: 1rjJ5 - View Document

Algebra / Abstract algebra / Mathematics / Scheme theory / Algebraic varieties / Algebraic structures / Noncommutative geometry / Quantum gravity / Zariski topology / Sheaf / Differentiable manifold / Algebraic geometry

On model theory, non-commutative geometry and physics Boris Zilber University of Oxford January 2, 2010

DocID: 1qgQL - View Document

Algebra / Abstract algebra / Mathematics / Representation theory / Monoidal categories / Algebras / Algebraic topology / Algebra over a field / Hopf algebras / Steenrod algebra / Depth of noncommutative subrings

BIPOLYNOMIAL KOPF ALGEBRAS and 0. Introduction Definition. A graded connected bicommutative Hopi’ algebra is said to be Lqxxj~tzc~~z&f

DocID: 1qaf4 - View Document