<--- Back to Details
First PageDocument Content
Bifurcation theory / Mathematical analysis / Mathematics / Systems science / Homoclinic bifurcation / Homoclinic orbit / Attractor / Bifurcation diagram / Dynamical system / Saddle point / Normal form / Limit set
Date: 1970-01-01 18:00:00
Bifurcation theory
Mathematical analysis
Mathematics
Systems science
Homoclinic bifurcation
Homoclinic orbit
Attractor
Bifurcation diagram
Dynamical system
Saddle point
Normal form
Limit set

IOP PUBLISHING NONLINEARITY Nonlinearity–1298

Add to Reading List

Source URL: www2.warwick.ac.uk

Download Document from Source Website

File Size: 364,40 KB

Share Document on Facebook

Similar Documents

Exploratory Data Analysis Tools Stelian Ion∗ Technical Reports Abstract In this paper we review some mathematical tools to analyze ecological data. We focus on

DocID: 1vqrO - View Document

K. Murota, University of Tokyo, Japan Matrices and Matroids for Systems Analysis A matroid is an abstract mathematical structure that captures combinatorial properties of matrices. This book offers a unique introduction

DocID: 1vdBT - View Document

Network-Design Sensitivity Analysis Paul Tune and Matthew Roughan School of Mathematical Sciences The University of Adelaide, Australia {paul.tune,matthew.roughan}@adelaide.edu.au

DocID: 1vdkB - View Document

Universit¨at Stuttgart Institut fu¨r Systemtheorie und Regelungstechnik Prof. Dr.–Ing. Frank Allg¨ower Open Thesis (BA, MA, SA) Mathematical modeling and analysis of

DocID: 1v77P - View Document

Probability: Subjective and Mathematical Author(s): Peter J. R. Millican Source: Analysis, Vol. 44, No. 1 (Jan., 1984), ppPublished by: Oxford University Press on behalf of The Analysis Committee Stable URL: http

DocID: 1v72E - View Document