<--- Back to Details
First PageDocument Content
Differential geometry / Euclidean geometry / Spheres / Hyperplane / Conformal geometry / Plane / Stereographic projection / Normal / Unit sphere / Geometry / Surfaces / Projective geometry
Date: 2007-05-28 20:50:50
Differential geometry
Euclidean geometry
Spheres
Hyperplane
Conformal geometry
Plane
Stereographic projection
Normal
Unit sphere
Geometry
Surfaces
Projective geometry

Add to Reading List

Source URL: geocalc.clas.asu.edu

Download Document from Source Website

File Size: 517,60 KB

Share Document on Facebook

Similar Documents

Week 6 (due FebProblem 6.8 in Morita. 2. Consider a unit sphere S 2 in R3 . The tangent bundle to R3 is trivial and one can define a connection on it by letting ∇

DocID: 1uKqe - View Document

Optimizing projections from the unit sphere to the plane for generation of panoramic images Leonardo K. Sacht, Paulo C. Carvalho,

DocID: 1sKDK - View Document

Optimizing projections from the unit sphere to the plane for generation of panoramic images Leonardo K. Sacht, Paulo Cezar Carvalho, Luiz Velho (leo-ks, pcezar, lvelho)@impa.br Introduction

DocID: 1s2Sr - View Document

Homogeneous spaces / Linear algebra / Vectors / Lorentzian manifolds / Differential geometry / Minkowski space / Norm / Differential geometry of surfaces / Sphere / Vector space / Hyperbolic space / Unit sphere

The Sphere in Minkowski Space Brian Freidan, Rob Halliday, and Shan Zou Graduate Advisor: Bill Karr Prof. Stephanie Alexander May 3, 2012 Abstract

DocID: 1pCOK - View Document

Metric geometry / Banach space / Functional analysis / HahnBanach theorem / Continuous function / Separable space / Complete metric space / Probability theory / BanachAlaoglu theorem / Proofs of convergence of random variables

Houston Journal of Mathematics c University of Houston Volume , No. , THICKNESS OF THE UNIT SPHERE, `1 -TYPES,

DocID: 1oFGN - View Document